No triângulo da figura abaixo, M, N e P são os pontos médios dos lados AB, BC e CA, respectivamente, e NA, BP e CM são as medianas desse triângulo.
Baricentro (G) é o ponto de intersecção das medianas de um triângulo.
O baricentro divide a mediana relativa a um lado em duas partes: a que vai do vértice do baricentro tem o dobro da medida da que vai do baricentro ao ponto médio do lado. Assim:
____________________________________________________________________________________________
Cálculo das coordenadas do baricentro
Sendo A(xa,ya), B(xb,yb) e C(xc,yc) vértices de um triângulo, se N é ponto médio de BC, temos:
Como:
Vem:
A abscissa do ponto divisor é dada por:
Substituindo essa igualdade pelos valores de xn e rg, temos:
Que é a média aritmética das abscissas dos vértices.
Analogamente, vem:
Que, por sua vez é a média aritmética das ordenadas dos vértices.
Logo, sendo G o baricentro de um triângulo ABC, temos:
Nenhum comentário:
Postar um comentário